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Physics 371 Fall 2020 Prof. Anlage 
Review 

 
Quantum Physics   

JJ Thomson charge-to-mass measurement in E, B fields: 𝑞𝑞/𝑚𝑚 = 𝑣𝑣
𝑅𝑅𝑅𝑅

.   
Millikan oil droplet experiment: revealed the quantization of electric charge. 
 
Blackbody radiation, Stefan-Boltzmann law: 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜎𝜎𝑇𝑇4, 𝜎𝜎 = 5.6703 × 10−8 𝑊𝑊

𝑚𝑚2𝐾𝐾4
.  

Wien displacement law says that 𝜆𝜆𝑚𝑚𝑇𝑇𝑚𝑚𝑇𝑇 = 2.898 × 10−3𝑚𝑚 − 𝐾𝐾.   
Radiation power per unit area related to the energy density of a blackbody: 𝑅𝑅(𝜆𝜆) = 𝑐𝑐

4
𝜌𝜌(𝜆𝜆).   

Rayleigh-Jeans (classical equipartition argument) law 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋𝑘𝑘𝑅𝑅𝑇𝑇/𝜆𝜆4 leads to the 
‘ultraviolet catastrophe’.   
Planck blackbody radiation (treat the atoms as having discrete energy states, and the light 
as having energy 𝐸𝐸 = ℎ𝑓𝑓): 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋ℎ𝑐𝑐/𝜆𝜆5

𝑒𝑒ℎ𝑐𝑐/𝜆𝜆𝑘𝑘𝐵𝐵𝑇𝑇−1
, ℎ = 6.626 × 10−34𝐽𝐽 − 𝑠𝑠.  

 
Photoelectric effect and the concept of light as a particle (photon with 𝐸𝐸 = ℎ𝑓𝑓): ℎ𝑓𝑓 =
𝑒𝑒𝑒𝑒0 + 𝜙𝜙.  Photon collides with one electron and transfers all of its energy, −𝑒𝑒0 is the 
stopping potential. 
 
X-ray production by Bremsstrahlung with cutoff 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 1240

𝑉𝑉
 𝑛𝑛𝑚𝑚 (Duane-Hunt Rule), 

explained by Einstein as inverse photoemission with 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = ℎ𝑐𝑐
𝑒𝑒𝑉𝑉

.  Sharp emission lines arise 
from quantized energy levels in the ‘core shells’ of atoms. 
Bragg reflection of x-rays from layers of atoms in crystals: 𝑛𝑛𝜆𝜆 = 2𝑑𝑑 sin𝜃𝜃, where 𝑛𝑛 =
1, 2, 3, … , 𝑑𝑑 is the spacing between the parallel layers. 
 
Rutherford scattering (Phys 410) suggested that positive charge is concentrated in a very 
small volume – the nuclear model of the atom. 
Empirical rule for light emission from hydrogen 1

𝜆𝜆𝑚𝑚𝑚𝑚
= 𝑅𝑅 � 1

𝑚𝑚2 −
1
𝑚𝑚2
�, Rydberg constant 

𝑅𝑅 = 𝑅𝑅𝐻𝐻 = 1.096776 × 107  1
𝑚𝑚

 for Hydrogen.   
Bohr model of the hydrogen atom (assumes stationary states, light comes from transitions 
between stationary states, electron angular momentum in circular orbits is quantized):  
�𝐿𝐿�⃗ � = |𝑟𝑟 × 𝑚𝑚𝑣𝑣| = 𝑚𝑚𝑣𝑣𝑟𝑟 = 𝑛𝑛ℏ, with 𝑛𝑛 = 1, 2, 3, …,   Radius of circular orbits: 𝑟𝑟𝑚𝑚 = 𝑚𝑚2𝑇𝑇0

𝑍𝑍
 

with 𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0ℏ2

𝑚𝑚𝑒𝑒2
= 0.529 Å,  Total energy of Hydrogen atom: 𝐸𝐸𝑚𝑚 = −𝐸𝐸0

𝑍𝑍2

𝑚𝑚2
, with 𝐸𝐸0 =

𝑚𝑚𝑐𝑐2�𝑒𝑒2/4𝜋𝜋𝜀𝜀0�
2 

2 (ℏ𝑐𝑐)2
= 𝑚𝑚𝑐𝑐2 

2 
𝛼𝛼2 = 13.6 𝑒𝑒𝑒𝑒, 𝛼𝛼 = 𝑒𝑒2/4𝜋𝜋𝜀𝜀0

ℏ𝑐𝑐
≅ 1

137
 is called the ‘fine structure 

constant’.  Explains the Hydrogen atom emission spectrum but not multi-electron atoms. 
 
Davisson-Germer experiment shows that matter (electrons) diffract from periodic 
structures (Ni atoms on a surface) like waves.  It is clear that matter has a strong wave-like 
character when measured under appropriate conditions. 
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deBroglie proposed the wavelength of matter waves as 𝜆𝜆𝑑𝑑𝑅𝑅 = ℎ/𝑝𝑝, where 𝑝𝑝 is the linear 
momentum.  Classical physics should be recovered in the short-𝜆𝜆𝑑𝑑𝑅𝑅  limit – the 
Correspondence Principle 
 
The time-dependent Schrodinger equation: − ℏ2

2𝑚𝑚
𝜕𝜕2Ψ(𝑚𝑚,𝑇𝑇)
𝜕𝜕𝑚𝑚2

+ 𝑒𝑒(𝑥𝑥, 𝑡𝑡)Ψ(𝑥𝑥, 𝑡𝑡) = 𝑖𝑖ℏ 𝜕𝜕Ψ(𝑚𝑚,𝑇𝑇)
𝜕𝜕𝑇𝑇

;  
Separation of variables leads to Ψ(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓(𝑥𝑥)𝑒𝑒−𝑚𝑚𝑖𝑖𝑇𝑇/ℏ (a property of stationary states); 
Time-independent Schrodinger equation:  − ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓(𝑚𝑚)
𝑑𝑑𝑚𝑚2

+ 𝑒𝑒(𝑥𝑥) 𝜓𝜓(𝑥𝑥) = 𝐸𝐸𝜓𝜓(𝑥𝑥);  
The wavefunction Ψ(𝑥𝑥, 𝑡𝑡) is complex in general and cannot be measured.  Born 
interpretation of the wave function in terms of a probability density 𝑃𝑃(𝑥𝑥, 𝑡𝑡) =
Ψ∗(𝑥𝑥, 𝑡𝑡)Ψ(𝑥𝑥, 𝑡𝑡);  Only real and finite quantities can be measured experimentally. 
Normalization condition: ∫ |𝜓𝜓(𝑥𝑥)|2+∞

−∞ 𝑑𝑑𝑥𝑥 = 1.   
 
Particle of mass 𝑚𝑚 in an infinite square well between 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿: 𝐸𝐸𝑚𝑚 = ℏ2𝑘𝑘𝑚𝑚2

2𝑚𝑚
=

𝑛𝑛2 𝜋𝜋2ℏ2

2𝑚𝑚𝐿𝐿2
 with 𝑛𝑛 = 1, 2, 3, …, and 𝜓𝜓𝑚𝑚(𝑥𝑥) = �2/𝐿𝐿  sin𝑘𝑘𝑚𝑚𝑥𝑥.   

Finite square well of height 𝑒𝑒0, energy eigenvalues are solutions of the transcendental 

equation: tan �√2𝑚𝑚𝑖𝑖
ℏ

𝑎𝑎� = �𝑉𝑉0−𝑖𝑖
𝑖𝑖

 (even parity solutions).  Always at least one solution! 

Harmonic oscillator: − ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓(𝑚𝑚)
𝑑𝑑𝑚𝑚2

+ 1
2
𝑚𝑚𝜔𝜔2𝑥𝑥2𝜓𝜓(𝑥𝑥)  = 𝐸𝐸𝜓𝜓(𝑥𝑥), 𝐸𝐸𝑚𝑚 = �𝑛𝑛 + 1

2
� ℏ𝜔𝜔, where 

𝑛𝑛 = 0, 1, 2, 3, …,  Eigenfunctions: 𝜓𝜓𝑚𝑚(𝑥𝑥) = 𝐶𝐶𝑚𝑚 𝑒𝑒−𝑚𝑚𝜔𝜔2𝑚𝑚2/2ℏ  𝐻𝐻𝑚𝑚(𝑥𝑥), involve the Hermite 
polynomials multiplying a Gaussian in 𝑥𝑥.   
Classical turning points are inflection points in 𝜓𝜓(𝑥𝑥).   
 

Step potential 𝑒𝑒(𝑥𝑥) = � 0    for  𝑥𝑥 < 0
𝑒𝑒0     for  𝑥𝑥 > 0 has reflection rate 𝑅𝑅 = �𝑘𝑘1−𝑘𝑘2

𝑘𝑘1+𝑘𝑘2
�
2
, and transmission 

rate 𝑇𝑇 = 4 𝑘𝑘1 𝑘𝑘2
(𝑘𝑘1+𝑘𝑘2)2

, where 𝑘𝑘1 = √2𝑚𝑚𝐸𝐸/ℏ and 𝑘𝑘2 = �2𝑚𝑚(𝐸𝐸 − 𝑒𝑒0)/ℏ. 

Tunneling probability through barrier 𝑇𝑇 = �1 + sinh2(𝛼𝛼𝑇𝑇)

4 𝐸𝐸𝑉𝑉0
 �1− 𝐸𝐸𝑉𝑉0

�
�
−1

≈ 16  𝑖𝑖
𝑉𝑉0

 �1−  𝑖𝑖
𝑉𝑉0
� 𝑒𝑒−2𝛼𝛼𝑇𝑇 , 

where  𝑎𝑎 is the barrier width, and  𝛼𝛼 = �2𝑚𝑚(𝑒𝑒0 − 𝐸𝐸)/ℏ. 
 
General wave uncertainty properties: (∆𝑥𝑥) (∆𝑘𝑘) ≥ 1/2, (∆𝑡𝑡) (∆𝜔𝜔) ≥ 1/2.   
Quantum uncertainty properties: (∆𝑥𝑥) (∆𝑝𝑝) ≥ ℏ/2, (∆𝑡𝑡) (∆𝐸𝐸) ≥ ℏ/2. 
 
Spin Angular Momentum: A “two-valudeness not describable classically.”  Spin 
quantum number 𝑠𝑠 = 1/2, with 𝑚𝑚𝑠𝑠 = ±1/2.  Stern-Gerlach device. 
 
Hydrogen Atom  3D TISE:  −ℏ

2

2𝑚𝑚
∇2𝜓𝜓(𝑟𝑟) + V(𝑟𝑟)𝜓𝜓(𝑟𝑟) =  𝐸𝐸𝜓𝜓(𝑟𝑟).  In spherical coordinates: 

−ℏ2

2𝑚𝑚
� 1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2 𝜕𝜕𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)

𝜕𝜕𝑟𝑟
�+ 1

𝑟𝑟2 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃
�sin 𝜃𝜃 𝜕𝜕𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)

𝜕𝜕𝜃𝜃
�+ 1

𝑟𝑟2 sin2 𝜃𝜃
�𝜕𝜕

2𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)
𝜕𝜕𝜙𝜙2

�� +
V(𝑟𝑟,𝜃𝜃,𝜙𝜙)𝜓𝜓(𝑟𝑟, 𝜃𝜃,𝜙𝜙) =  𝐸𝐸 𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)  Consider central forces only, such that 𝑒𝑒 = 𝑒𝑒(𝑟𝑟) 
only.  Separate variables as 𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝑅𝑅(𝑟𝑟)𝑌𝑌(𝜃𝜃,𝜙𝜙) to arrive at two new equations: 
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Radial 𝑑𝑑
𝑑𝑑𝑟𝑟
�𝑟𝑟2 𝑑𝑑𝑅𝑅

𝑑𝑑𝑟𝑟
� − 2𝑚𝑚𝑟𝑟2

ℏ2
[𝑒𝑒(𝑟𝑟)− 𝐸𝐸]𝑅𝑅 = ℓ(ℓ+ 1)𝑅𝑅 and Angular � 1

sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃
�sin𝜃𝜃 𝜕𝜕𝑌𝑌

𝜕𝜕𝜃𝜃
� +

1
sin2 𝜃𝜃

�𝜕𝜕
2𝑌𝑌

𝜕𝜕𝜙𝜙2
�� = −ℓ(ℓ+ 1)𝑌𝑌.   

Solution to the angular equation are the spherical harmonics: 𝑌𝑌ℓ𝑚𝑚(𝜃𝜃,𝜙𝜙) with ℓ ≥ 0, and 
|𝑚𝑚| ≤ ℓ.  The length squared of 𝐿𝐿�⃗  is given by ℓ(ℓ + 1)ℏ2.  The z-component of 𝐿𝐿�⃗  is given 
by 𝑚𝑚ℏ.   
Solution to the radial equation gives the Principal quantum number 𝑛𝑛 and the energies 𝐸𝐸𝑚𝑚 =

− � 𝑚𝑚
2ℏ2

 � 𝑒𝑒2

4𝜋𝜋𝜀𝜀0
�
2
�  1
𝑚𝑚2

, where 𝑛𝑛 = 1, 2, 3, …, 𝐸𝐸1 = −13.6 𝑒𝑒𝑒𝑒.  Bohr radius: 𝑎𝑎 = 4𝜋𝜋𝜀𝜀0ℏ2

𝑚𝑚𝑒𝑒2
=

0.529 × 10−10 𝑚𝑚.   

Full solution: 𝜓𝜓𝑚𝑚ℓ𝑚𝑚(𝑟𝑟,𝜃𝜃,𝜙𝜙) = �� 2
𝑚𝑚𝑇𝑇
�
3 (𝑚𝑚−ℓ−1)!
2𝑚𝑚 (𝑚𝑚+ℓ)!

 �2𝑟𝑟
𝑚𝑚𝑇𝑇
�
ℓ
𝐿𝐿𝑚𝑚−ℓ−12ℓ+1 �2𝑟𝑟

𝑚𝑚𝑇𝑇
� 𝑒𝑒−𝑟𝑟/𝑚𝑚𝑇𝑇 𝑌𝑌ℓ𝑚𝑚(𝜃𝜃,𝜙𝜙) 

𝒏𝒏 = 𝟏𝟏,  𝟐𝟐,  𝟑𝟑,  …  Principal Quantum Number (an infinite number of bound states) 
𝓵𝓵 = 𝟎𝟎,  𝟏𝟏,  𝟐𝟐,  𝟑𝟑,  …𝒏𝒏 − 𝟏𝟏   Angular Momentum Quantum Number (𝒏𝒏 values) 
𝒎𝒎𝓵𝓵 = −𝓵𝓵,  − 𝓵𝓵 + 𝟏𝟏,  … ,  𝟎𝟎,  … ,  𝓵𝓵 − 𝟏𝟏,  𝓵𝓵   Magnetic Quantum Number (𝟐𝟐ℓ+𝟏𝟏 values) 
𝒎𝒎𝒔𝒔 = −𝟏𝟏

𝟐𝟐
,  + 𝟏𝟏

𝟐𝟐
     Spin Quantum Number (𝟐𝟐 values) 

Hence a quantum state of the hydrogen atom is specified by a list of 4 quantum numbers: 
(𝑛𝑛, ℓ,𝑚𝑚ℓ,𝑚𝑚𝑠𝑠).  Degeneracy of the nth state of the hydrogen atom is given by 𝑑𝑑(𝑛𝑛) =
2∑ (2ℓ + 1 ) = 2𝑛𝑛2𝑚𝑚−1

ℓ=0  
Multi-Electron Atoms: Utilize the Independent Particle Approximation (Mean Field 
Theory) to find an effective potential for any particular electron that allows a Hydrogen-
like solution for the electron states. 
Nuclear Physics: The nucleus is small and approximately spherical with a radius 𝑅𝑅 =
𝑅𝑅0𝐴𝐴1/3, where 𝑅𝑅0 = 1.07 𝑓𝑓𝑚𝑚.  The nucleus is a bound state of 𝑍𝑍 protons and 𝑁𝑁 neutrons 
with binding energy 𝐵𝐵 defined as 𝑚𝑚𝑚𝑚𝑛𝑛𝑐𝑐𝑇𝑇𝑒𝑒𝑛𝑛𝑠𝑠 = 𝑍𝑍 𝑚𝑚𝑝𝑝𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚 + 𝑁𝑁 𝑚𝑚𝑁𝑁𝑒𝑒𝑛𝑛𝑇𝑇𝑟𝑟𝑇𝑇𝑚𝑚 −

𝑅𝑅
𝑐𝑐2

.  The notation 
for identifying a specific nucleus is as follows: 𝑋𝑋𝑍𝑍𝐴𝐴 𝑁𝑁, where 𝑋𝑋 is a code name for 𝑍𝑍 from 
the periodic table, and 𝐴𝐴 = 𝑍𝑍 + 𝑁𝑁.  The density of the nucleus is constant to good 
approximation.   
Binding energy 𝐵𝐵 ≈ 𝑎𝑎𝑣𝑣𝑇𝑇𝑇𝑇𝐴𝐴 − 𝑎𝑎𝑠𝑠𝑛𝑛𝑟𝑟𝑠𝑠𝐴𝐴

1
3 − 𝑎𝑎𝐶𝐶𝑇𝑇𝑛𝑛𝑇𝑇

𝑍𝑍2

𝐴𝐴1/3 shows corrections due to surface 
effects and Coulomb repulsion giving rise to a peak value of 𝐵𝐵/𝐴𝐴 at 𝐹𝐹𝑒𝑒26

56
30. 

Radioactivity: 𝑟𝑟 = probability that a nucleus will decay in a unit time period.  𝑁𝑁(𝑡𝑡) =
𝑁𝑁0𝑒𝑒−𝑟𝑟𝑇𝑇.  Lifetime 𝜏𝜏 = 1/𝑟𝑟.  Half-life 𝑡𝑡1/2 = 𝜏𝜏 𝑙𝑙𝑛𝑛2.  𝑁𝑁(𝑡𝑡) = 𝑁𝑁0/2𝑇𝑇/𝑇𝑇1/2. 
Alpha decay of heavy nuclei: 𝑙𝑙𝑛𝑛𝑡𝑡1/2 = 𝑇𝑇𝑍𝑍 

√𝐾𝐾
− 𝑏𝑏√𝑍𝑍 𝑅𝑅 + c 

 
What is Important?  Quantum mechanics is a wave theory of matter.  You should not 
impose classical notions on the solutions to quantum problems. 

The Bohr model of the hydrogen atom – a good starting point! 

 Solving the TISE quickly and efficiently and accurately 

 Properties of the ubiquitous QM problems:  

Infinite Square Well, Harmonic Oscillator, Free Particle, Finite square 

 well, scattering problems 
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  Energy values, wavefunctions, quantum numbers and their possible values 

and constraints, degeneracies 

 Being able to sketch wavefunctions for new potentials using intuition 

 
Problem-Solving strategies: Go back to the Schrodinger equation and the interpretation 
of the wavefunction.  In quantum mechanics there is no information available beyond that 
you can derive from the wavefunction. 

 


